Final Project

Sound Reactive LED DJ Mask

For my project, I decided to construct a LED mask that reacts to sound and can be worn at a concert, event, or as a DJ.

Materials
1 Paintball / Airsoft mask
3 RGB LED Neopixel strips
1 LED Neopixel ring
3 Audio Mics
2 FLORAs & 1 GEMMA
3 Li-Polymer batteries
Breadboard-friendly switch

General Materials
Wire connectors
Silicon Glue
Electrical tape
Wire cutter
Wire Stripper
Soldering iron and solder
Dremel Die Grinder tool or Saw

CODE[Neopixel Ring]

#include <Adafruit_NeoPixel.h>

#define N_PIXELS  12  // Number of pixels you are using
#define MIC_PIN   1  // Microphone is attached to Trinket GPIO #2/Gemma D2 (A1)
#define LED_PIN    0  // NeoPixel LED strand is connected to GPIO #0 / D0
#define DC_OFFSET  0  // DC offset in mic signal – if unusure, leave 0
#define NOISE     100  // Noise/hum/interference in mic signal
#define SAMPLES   60  // Length of buffer for dynamic level adjustment
#define TOP       (N_PIXELS +1) // Allow dot to go slightly off scale

byte
  peak      = 0,      // Used for falling dot
  dotCount  = 0,      // Frame counter for delaying dot-falling speed
  volCount  = 0;      // Frame counter for storing past volume data

int
  vol[SAMPLES],       // Collection of prior volume samples
  lvl       = 10,     // Current “dampened” audio level
  minLvlAvg = 0,      // For dynamic adjustment of graph low & high
  maxLvlAvg = 512;

Adafruit_NeoPixel  strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);

void setup() {
  memset(vol, 0, sizeof(vol));
  strip.begin();
}
void loop() {
  uint8_t  i;
  uint16_t minLvl, maxLvl;
  int      n, height;
  n   = analogRead(MIC_PIN);                // Raw reading from mic
  n   = abs(n – 512 – DC_OFFSET);            // Center on zero
  n   = (n <= NOISE) ? 0 : (n – NOISE);      // Remove noise/hum
  lvl = ((lvl * 7) + n) >> 3;    // “Dampened” reading (else looks twitchy)

  // Calculate bar height based on dynamic min/max levels (fixed point):
  height = TOP * (lvl – minLvlAvg) / (long)(maxLvlAvg – minLvlAvg);

  if(height < 0L)       height = 0;      // Clip output
  else if(height > TOP) height = TOP;
  if(height > peak)     peak   = height; // Keep ‘peak’ dot at top

  // Color pixels based on rainbow gradient
  for(i=0; i<N_PIXELS; i++) {
    if(i >= height)            
       strip.setPixelColor(i,   0,   0, 0);
    else
       strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
    }

   strip.show(); // Update strip

  vol[volCount] = n;                      // Save sample for dynamic leveling
  if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter

  // Get volume range of prior frames
  minLvl = maxLvl = vol[0];
  for(i=1; i<SAMPLES; i++) {
    if(vol[i] < minLvl)      minLvl = vol[i];
    else if(vol[i] > maxLvl) maxLvl = vol[i];
  }
  // minLvl and maxLvl indicate the volume range over prior frames, used
  // for vertically scaling the output graph (so it looks interesting
  // regardless of volume level).  If they’re too close together though
  // (e.g. at very low volume levels) the graph becomes super coarse
  // and ‘jumpy’…so keep some minimum distance between them (this
  // also lets the graph go to zero when no sound is playing):
  if((maxLvl – minLvl) < TOP) maxLvl = minLvl + TOP;
  minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
  maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}

// Input a value 0 to 255 to get a color value.
// The colors are a transition r – g – b – back to r.
uint32_t Wheel(byte WheelPos) {
  if(WheelPos < 85) {
   return strip.Color(WheelPos * 3, 255 – WheelPos * 3, 0);
  } else if(WheelPos < 170) {
   WheelPos -= 85;
   return strip.Color(255 – WheelPos * 3, 0, WheelPos * 3);
  } else {
   WheelPos -= 170;
   return strip.Color(0, WheelPos * 3, 255 – WheelPos * 3);
  }
}

CODE[Neopixel Strip]

#define N_PIXELS  76  // Number of pixels in strand
#define MIC_PIN   A9  // Microphone is attached to this analog pin
#define LED_PIN    6  // NeoPixel LED strand is connected to this pin
#define DC_OFFSET  0  // DC offset in mic signal – if unusure, leave 0
#define NOISE     10  // Noise/hum/interference in mic signal
#define SAMPLES   60  // Length of buffer for dynamic level adjustment
#define TOP       (N_PIXELS + 2) // Allow dot to go slightly off scale
#define PEAK_FALL 4  // Rate of peak falling dot

byte
  peak      = 0,      // Used for falling dot
  dotCount  = 0,      // Frame counter for delaying dot-falling speed
  volCount  = 0;      // Frame counter for storing past volume data
int
  vol[SAMPLES],       // Collection of prior volume samples
  lvl       = 10,      // Current “dampened” audio level
  minLvlAvg = 0,      // For dynamic adjustment of graph low & high
  maxLvlAvg = 512;
Adafruit_NeoPixel
  strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);

void setup() {

  // This is only needed on 5V Arduinos (Uno, Leonardo, etc.).
  // Connect 3.3V to mic AND TO AREF ON ARDUINO and enable this
  // line.  Audio samples are ‘cleaner’ at 3.3V.
  // COMMENT OUT THIS LINE FOR 3.3V ARDUINOS (FLORA, ETC.):
//  analogReference(EXTERNAL);

  memset(vol, 0, sizeof(vol));
  strip.begin();
}

void loop() {
  uint8_t  i;
  uint16_t minLvl, maxLvl;
  int      n, height;

  n   = analogRead(MIC_PIN);                        // Raw reading from mic
  n   = abs(n – 512 – DC_OFFSET); // Center on zero
  n   = (n <= NOISE) ? 0 : (n – NOISE);             // Remove noise/hum
  lvl = ((lvl * 7) + n) >> 3;    // “Dampened” reading (else looks twitchy)

  // Calculate bar height based on dynamic min/max levels (fixed point):
  height = TOP * (lvl – minLvlAvg) / (long)(maxLvlAvg – minLvlAvg);

  if(height < 0L)       height = 0;      // Clip output
  else if(height > TOP) height = TOP;
  if(height > peak)     peak   = height; // Keep ‘peak’ dot at top

  // Color pixels based on rainbow gradient
  for(i=0; i<N_PIXELS; i++) {
    if(i >= height)               strip.setPixelColor(i,   0,   0, 0);
    else strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
 
  }

  // Draw peak dot
  if(peak > 0 && peak <= N_PIXELS-1) strip.setPixelColor(peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));

   strip.show(); // Update strip

// Every few frames, make the peak pixel drop by 1:

    if(++dotCount >= PEAK_FALL) { //fall rate
   
      if(peak > 0) peak–;
      dotCount = 0;
    }

  vol[volCount] = n;                      // Save sample for dynamic leveling
  if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter

  // Get volume range of prior frames
  minLvl = maxLvl = vol[0];
  for(i=1; i<SAMPLES; i++) {
    if(vol[i] < minLvl)      minLvl = vol[i];
    else if(vol[i] > maxLvl) maxLvl = vol[i];
  }
  // minLvl and maxLvl indicate the volume range over prior frames, used
  // for vertically scaling the output graph (so it looks interesting
  // regardless of volume level).  If they’re too close together though
  // (e.g. at very low volume levels) the graph becomes super coarse
  // and ‘jumpy’…so keep some minimum distance between them (this
  // also lets the graph go to zero when no sound is playing):
  if((maxLvl – minLvl) < TOP) maxLvl = minLvl + TOP;
  minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
  maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)

}

// Input a value 0 to 255 to get a color value.
// The colors are a transition r – g – b – back to r.
uint32_t Wheel(byte WheelPos) {
  if(WheelPos < 85) {
   return strip.Color(WheelPos * 3, 255 – WheelPos * 3, 0);
  } else if(WheelPos < 170) {
   WheelPos -= 85;
   return strip.Color(255 – WheelPos * 3, 0, WheelPos * 3);
  } else {
   WheelPos -= 170;
   return strip.Color(0, WheelPos * 3, 255 – WheelPos * 3);
  }

}

Methods
– For the Mask itself, I was more focused on where the LED strips were going to go than the wiring because there’s definitely no reversing saw after making a cut, and I have to carefully measure and plan where everything was going to go.

– The wires were not a problem because they are not going to be seen, even though the eyes; when they did, I taped them to the side of the mask or stuffed them under the padding.

– One switch and battery wasn’t going to be able to work for all three programmers, so I decided to give them all their own battery and I gave the smallest (GEMMA) the switch, while I just used the switch that was already on the programmers for the large ones.

After almost 3 hours of cutting and sanding, 6 hours of assembly and 3 hours of coding, this is what the end product looks like: