
Codes typically serve three main
purposes. They are used for
communication, clarification, or
obfuscation.

In Morse code, a word is trans-
formed into short and long pulses
so that it can be communicated
over a telegraph. The word my
is encoded by the sender into
“-- -.--”; the resulting sound is
then decoded back into my by the
receiver.

Genetic information is encoded
in sequences of deoxyribonucleic
acid (DNA), such as “AAAGTCTGAC,”
with A standing for adenine, G for
guanine, T for thymine, and
C for cytosine. The genetic code
is a set of rules that use these
sequences to build proteins.

The California Health and Safety
Code is a set of written laws that
codify the rules set forth by the
State Legislature. For example, sec-
tion 12504 states, “Flammable liquid
means any liquid whose flashpoint
is 100 degrees Fahrenheit, or less.”

Ever since the origins of writing,
codes have been used to protect
messages from unwanted eyes.
For example, a code can be as
simple as replacing each letter of
the English alphabet with a number:
A is 1, B is 2, C is 3, etc; with
this code, the word secret becomes
“19, 5, 3, 18, 5, 20.”

The grid on this page began as a simple and evenly spaced
pattern. The outline of Neutral was converted to points, and a
system was defined in code to map these points on the grid.
The point systems are slightly offset from their initial positions
to reveal the information.

11

W
H
A
T

I
S

C
O
D
E
?

There are many types of code. Within the
context of this book, we’re interested pri-
marily in codes that represent a series of
instructions. This type of code—often called
an algorithm, procedure, or program—
defines a specific process with enough detail
to allow the instructions to be followed.
While the word algorithm may be unfamiliar
to you, its meaning is not. It’s just a precise
way of explaining how to do something.
It is commonly used within the context of
computer instructions. While most people
wouldn’t refer to a pattern for knitting a
scarf as an algorithm, it’s the same idea.

Row 1: (RS) *K2, P2* across
Rows 2, 3, & 4: Repeat Row 1
Row 5: (RS) *K2, P2, C8F* Repeat to last

4 sts, K2, P2
Row 6: Repeat Row 1
Repeat rows 1-6 for desired length,

ending with row 4
Bind off in K2, P2 pattern

Likewise, directions to get from one place
to another, instructions for assembling kit-
of-parts furniture, and many other types of
guidelines are also algorithms.

Algorithms can be defined as having four
qualities. These qualities can be easily
understood when defined in relation to
travel directions.

There are many ways to write an algorithm.
In other words, there are always multiple
ways to get from point A to point B. Different
people will create different sets of direc-
tions, but they all get the reader to their
intended destination.

An algorithm requires assumptions. Hiking
directions assume that you know how to
hike, from knowing to wear the right shoes,
to understanding how to follow a winding
trail, to assuming that you know to bring
plenty of water. Without this knowledge,
the hiker may end up lost and dehydrated
with blistered feet.

An algorithm includes decisions. Directions
often include instructions from different
starting locations. The person reading the
directions will need to choose a starting
position.

A complex algorithm should be broken
down into modular pieces. Directions are
often divided into small units to make
them easy to follow. There may be separate
directions for coming from the North or
South, but at a certain point the directions
converge and both groups follow the same
instructions.

--. . -. . - .. -.-. / -.-. --- -.. . .-.-.- /- .-.. - / -.-. --- -.. . .-.-.- / -... ..-
.. .-.. -.. .. -. --. / -.-. --- -.. . .-.-.- / -... .- .-. / -.-. --- -.. . .-.-.- / -- --- .-.
/ -.-. --- -.. . .-.-.- / -.. .-. / -.-. --- -.. . .-.-.- / .- .-. . .- / -.-. --- -.. . .-.-
.- / -.-. .-. . - / -.-. --- -.. . .-.-.- / -.-. --- -.. / .- .-. . / ..- -.. / ..-.
--- .-. / -.-. --- -- -- ..- -. .. -.-. .- - .. --- -. --..-- / -.-. .-.. .- .-. .. - -.-- --..-- /
.- -. -.. / --- -... ..-. ..- ... -.-. .- - .. --- -. .-.-.- / .. -. / -- --- .-. / -.-. --- -..
. --..-- / .- / .-- --- .-. -.. / / - .-. .- -.-. --- .-. -- . -.. / .. -. - --- / ...
.... --- .-. - / .- -. -.. / .-.. --- -. --. / .--. ..- .-.. / ... --- / -- - / .. - /
-.-. .- -. / -... . / -.-. --- -- -- ..- -. .. -.-. .- - . -.. / --- ...- . .-. / .- / - . .-.. . --.
.-. .- .--.-.-.- / ..-. --- .-. / . -..- .- -- .--. .-.. . --..-- / - / .-- --- .-. -..
/ -- -.-- / / . -. -.-. --- -.. . -.. / -... -.-- / - / -. -.. . .-. / .. -. - --- /
-....- -....- / -....- .-.-.- -....- -....- --..-- / .-- -.-. / / - -. / -..
. -.-. --- -.. . -.. / -... .- -.-. -.- / .. -. - --- / -- -.-- / -... -.-- / - / .-. . -.-. .
.. ...- . .-. .-.-.- / -- .. .-.. .- .-. .-.. -.-- --..-- / --. . -. . - .. -.-. / .. -. ..-.
--- .-. -- .- - .. --- -. / / . -. -.-. --- -.. . -.. / .. -. / -.. -. .- / --.- ..- . -.
-.-. / -.--.- . .-.-.- --. .-.-.- / .- .- .- --. - -.-. - --. .- -.-. .-.-.- .-.-.- .-.-.- -.-
-.- .-.-.- / - / --. . -. . - .. -.-. / -.-. --- -.. . / / .- / - / --- ..-. / .-.
..- .-.. / -- - / ..- / - / --.- ..- . -. -.-. / - --- / -...
..- .. .-.. -.. / .--. .-. --- - . .. -.-.-.- / -.-. --- -.. / .- .-. . / .- .-.. ... --- /
..- -.. / ..-. --- .-. / -.-. .-.. .- .-. .. - -.-- .-.-.- / ..-. --- .-. / . -..- .- -- .--. .-..
. --..-- / - / -.-. .- .-..-. --- .-. -. .. .- /- .-.. - / .- -. -.. / ...
.- ..-. . - -.-- / -.-. --- -.. . / / .- / -.-. --- -- .--. .. .-.. .- - .. --- -. / --- ..-. /
.-- .-. .. - - . -. / .-.. .- .-- ... / -- - / -.-. --- -..-. -.-- / - / .-. ..- .-..
. ... / - / -... -.-- / - / .-.. . --.-.. .- - ..- .-. . .-.-.- / ..-. --- .-. / .
-..- .- -- .--. .-.. . --..-- / -.-. - .. --- -. / .---- ..--- ------ / ... - .- - .
... --..-- / ..-. .-.. .- -- -- .- -... .-.. . / .-.. .. --.- ..- .. -.. / -- . .- -. ... / .- -. -.-- /
.-.. .. --.- ..- .. -.. / .-- --- / ..-. .-.. .---. --- .. -. - / / .----
----- ----- / -.. . --. .-. / ..-. .--. . -. - --..-- / -.-. --- -.. /
.- .-.. ... --- / --- -... ... -.-. ..- .-. . / .. -. ..-. --- .-. -- .- - .. --- -. / -. -.-. .
/ - / --- .-. .. --. .. -. ... / --- ..-. / .-- .-. .. - .. -. --. --..-- / - -.-- /
.- ...- . / -... . . -. / ..- -.. / .--. .-. --- - . -.-. - / --- --. / ..-. .-.
--- -- / ..- -. .-- .- -. - . -.. / . -.---.-.- / .- / -.-. --- -.. . / -.-. .- -. / -... . /
.- ... / -- .--. .-.. . / .- ... / .-. . .--. .-.. .- -.-. .. -. --. / . .- -.-. / .-.. . - -
. .-. / .-- .. - / .- / -. ..- -- -... . .-. ---... / .- / / .---- --..-- / -... / /
..--- --..-- / -.-. / / ...-- --..-- / . - -.-. .-.-.- / .-- .. - / - / -.-. ---
-.. . --..-- / - / .-- --- .-. -.. / -.-. .-. . - / -... . -.-. --- -- / .---- ----.
/ / ...-- / .---- ---.. / / ..--- ----- .-.-.-

The Algorithm

Morse code, 1840s
In Morse code, every
character is encoded as
a rhythmic sequence of
dots and dashes.

Hiking Directions to Point Break

From the North:
- Follow the trail from the Nature

Center
- Turn right at the Water Tower,

walk until you see the Old Oak Tree
- Follow directions from the Old Oak

Tree

From the South:
- From the Pinic Grove, follow the

Botany Trail
- Turn right on the South Meadow Trail
- Turn right on the Meadow Ranch Trail,

walk until you see the Old Oak Tree
- Follow directions from the Old Oak

Tree	

From the Old Oak Tree:
- Follow the path under the tree
- Turn right onto the Long Hill Trail
- Follow the trail until you reach

Point Break

12 What is Code? 13

W
h
a
t

i
s

c
o
d
e
?

What is Code?

In computer programming, code (also called
source code) is used to control the opera-
tions of a computer. It is an algorithm written
in a programming language. There are thou-
sands of programming languages, and new
ones are developed every year.

Although the words and punctuation used
in programming languages look different
from written English words, the codes they
use are intended to be read and understood
by people. Specifically, computer-program-
ming languages are designed for the way
people are taught to read and write from
a young age, with the precision necessary
for instructing a computer. Human languages
are verbose, ambiguous, and contain large
vocabularies. Code is terse, has strict
syntactical rules, and small vocabularies.
Constructing an essay and a computer
program are, however, both forms of writing,
as explained in Processing: A Programming
Handbook for Visual Designers and Artists:

Writing in a human language allows the
author to utilize the ambiguity of words
and to have great flexibility in construct-
ing phrases. These techniques allow
multiple interpretations of a single text
and give each author a unique voice. Each
computer program also reveals the style
of its author, but there is far less room for
ambiguity.”1

In fact, there can only be one interpretation
of every piece of code. Unlike people,
computers are not able to guess or interpret
a meaning if it’s not stated exactly. There are
rules of grammar in every language, but if I
misspell a wurd or two, you will still under-
stand, but the computer won’t. Fortunately
(or maybe unfortunately), people are highly
adaptable, and for many individuals it’s easy
to learn how to structure code.

Before a piece of code can be run on
a computer, it must be converted from a
human-readable format to a computer-exe-
cutable format; these are sometimes called
machine code, binaries, or executables.

This conversion transforms the code into
software. It can now run (or execute) on a
computer. Machine-based code is usually
represented as a series of 1s and 0s:

0001 0001 0000 1001 0000 0001 0000
1110 0000 1001 1100 1101 0000 0101
0000 0000 1100 1001 0100 1000 0110
0101 0110 1100 0110 1100 0110 1111
0010 0001 0010 0100

While this series of 1s and 0s looks
different from source code, it’s a literal
translation of the human-readable code.
This translation is required for the com-
puter to be able to follow the instructions.
We think you’ll agree that understanding
what these sequences of 1s and 0s mean
is more difficult than reading the source
code. This format instructs the computer’s
operations at the lowest level. Each bit
(1 or 0) is grouped into bytes (a sequence
of eight bits) that define how the computer
makes calculations and moves data into
and out of the processor.

 1 Casey Reas and Ben Fry,
Processing: A Programming
Handbook for Visual Designers
and Artists (Cambridge, MA:
MIT Press, 2007), 17.

Code and computers

PostScript, 1982
The PostScript language
specializes in defining
pages for print output.
Although PostScript
files can be written in
a text editor, they are

typically created with
a graphical user inter-
face (GUI), which makes
it easier to create and
edit files but removes
the more powerful
features.

Processing
Processing is a pro-
gramming language and
environment with a focus
on coding form, motion,
and interaction. It
simplifies and extends

the Java language. This
Processing program
draws a line at the
position of the mouse;
the line thickness is
calculated by the speed
of the mouse.

Processing

PostScript
14What is Code? What is Code? 15

W
h
a
t

i
s

c
o
d
e
?

Software is a tool for the mind. While the
industrial revolution produced tools to aug-
ment the body, such as the steam engine and
the automobile, the information revolution
is producing tools to extend the intellect.
The software resources and techniques at
our disposal allow us to access and process
enormous quantities of information. For
example, the science of genomics (the study
of the genome) and the collaborative schol-
arship of Wikipedia were not possible with-
out the aid of software. But using software is
not only about increasing our ability to work
with large volumes of information; it also
encourages new and different ways of
thinking.

The term procedural literacy has been
used to define this potential. Michael
Mateas, an associate professor in the
computer science program at the University
of California, Santa Cruz, describes proce-
dural literacy as “the ability to read and write
processes, to engage procedural represen-
tation and aesthetics.”2 One component of
procedural literacy is the idea that program-
ming is not strictly a technical task; it’s an
act of communication and a symbolic way
of representing the world. A procedural
representation is not static. It’s a system of
rules that define a space of possible forms
or actions. Video game designer Ian Bogost
defines this elegantly in his book Persuasive
Games: The Expressive Power of Videogames:

To write procedurally, one authors code
that enforces rules to generate some kind
of representation, rather than authoring
the representation itself. Procedural
systems generate behaviors based on
rule-based models; they are machines
capable of producing many outcomes,
each conforming to the same overall
guidelines.3

A video game like Spacewar! is a good
example of a procedural representation.
Playing the game requires understanding
the spatial and kinetic relationships between
two opposing spaceships. Each player
controls a ship by rotating left and right
and by thrusting the rocket with the goal of
shooting down the other ship. To write the
game, a procedurally literate individual had
to break the behaviors into modules with
enough detail so that they could be pro-
grammed. The primary complexity involved
in creating the game is not technical; it’s
about choreographing all of the components
into a coherent and enjoyable experience.
Procedural literacy is a general way of think-
ing that cuts across all programming lan-
guages and even applies to thinking outside
the domain of writing source code.

Each programming language is a dif-
ferent kind of material to work and think
with. Just as a carpenter knows the unique
properties of various woods, including oak,
balsa, and pine, a person knowledgeable
about software knows the unique aspects
of different programming languages. A car-
penter building a table will select the wood
based on factors such as cost, durability,
and aesthetics. A programmer selects a pro-
gramming language based on the estimated
budget, operating system, and aesthetics.4
The syntax (or grammar) of each program-
ming language structures what is possible
within that language. Different programming
languages encourage programmers to think
about their work through the affordances (or
action possibilities) and constraints of that
language.

The way that a programming language
encourages a certain mode of thinking can
be demonstrated by comparing two very dif-
ferent languages: BASIC and LOGO. In each
of these programming environments, draw-
ing a triangle requires a different approach
and understanding of space. BASIC relies
on an established coordinate system and
requires the knowledge of coordinates; lines
are drawn by connecting one coordinate

 2 Michael Mateas, “Procedural
Literacy: Educating the New
Media Practitioner,” Beyond
Fun, ed. Drew Davidson
(Pittsburgh, PA: ETC Press,
2008), 67.

 3 Ian Bogost, Persuasive
Games: The Expressive Power
of Videogames (Cambridge,
MA: MIT Press, 2007), 4.

 4 There are many reasons why
one programming language
may be preferred over another.
For example, some languages
allow code to be written
faster, but this is usually at the
expense of how fast the code
is capable of running. Some
languages are more obscure
than others, therefore reducing
the chances that another
programmer knows of the
language.

Thinking in code

Spacewar!,1962
This early video game
simulates a space
battle between two
ships. Each ship can
rotate left and right,
thrust, and fire.

A star in the center of
the screen pulls each
ship into its gravi-
tational field. Here,
it’s seen running on a
DEC PDP-1 computer.

What is Code? 17

W
h
a
t

i
s

c
o
d
e
?

What is Code? 16

to another.5 In contrast, LOGO is a language
developed for young children who have not
yet studied geometry; it allows the user to
code a shape with only an understanding of
angles and the difference between left and
right. In this program, the child draws lines by
directing the path of a turtle on screen. The
child imagines that he or she is the turtle and
moves forward, turns to the right, moves for-
ward, turns to the right again, and then moves
forward to complete the triangle.6 Although
both languages allow the same shapes to
be drawn, BASIC promotes objectivity, while
LOGO fosters exploration. Additionally, LOGO
encourages the programmer to run the code
mentally, which is a useful skill for developing
procedural literacy.

BASIC
10 HGR : HCOLOR = 3
20 HPLOT 0, 0 TO 100, 50 TO 0, 100 TO 0, 0
30 END

LOGO		
Forward 100
	Right 120
	Forward 100
	Right 120
FORWARD 100

	

Visual programming languages (also called
graphical programming languages) provide
an alternative way of thinking with code.
Writing a program with a visual program-
ming language is similar to making a
diagram instead of writing a text. Three
of the most popular visual programming
languages within the arts—Max, Pure Data,
and vvvv—were influenced by the way
sounds are constructed using patch cables
attached to analog synthesizers. Virtual
cables, represented as lines on screen, are
used to connect programming modules
together to define the software. Visual
programming languages make it easy to
generate and filter images and sounds, but
they are often too cumbersome for writing
long, complicated programs. For example,
the Max program is written in the text
programming language C++, not a visual
programming language.

vvvv, 1998–present
Each box in the vvvv
environment can be
connected to others so
that users can control
the way data flows
through the program.

Each program is a
visual diagram of
connected nodes. This
patch for drawing an
L-system was written by
David Dessens.

 5 The BASIC language was
designed in 1964 to teach non-
technical university students
how to program. Variations
of it were used to teach many
children and hobbyists how
to program in the early era of
personal computing.

 6 In LOGO, first developed
in 1967, drawings are made
by moving a triangular turtle
around on screen. Early ver-
sions of the language moved a
robotic turtle around the room.

18What is Code? What is Code? 19

W
h
a
t

i
s

c
o
d
e
?

Beginning in the 1940s, code was developed
to assist with work in the fields of science
and engineering. Seymour Papert, a pioneer
in researching computers and creativity,
explains the situation at the time:

The world was at war. Complex calcula-
tions had to be done under time pressures
not normally felt by mathematicians:
numerical calculations related to the
design and use of weapons; logical
manipulations to break ever more com-
plex codes before information became old
news....It’s unlikely that they gave even
a passing thought to making computers
user-friendly to people with softer styles
than theirs.7

The decisions made about computers and
programming languages since that time
have, along with other factors, hindered the
synthesis of software and the arts. It’s an
unfortunate fact that many languages used
within the arts were not originally designed
for those areas. The software desires of
designers, architects, and artists are often
different from those of scientists, mathemati-
cians, and engineers. The technical skill
required to create visual form with the most
dominant languages, such as C++ and Java,
often takes years to acquire.

An alternative way of considering code
is revealed through the work of artists who
in the 1950s and 1960s began to experi-
ment with software and themes related to
software, such as dematerialization and
system aesthetics. These explorations
were first presented to the general public
in the exhibition Cybernetic Serendipity,
held at the Institute of Contemporary Arts
in London in 1968; as well as in the shows
Software—Information Technology: Its New
Meaning for Art, held at the Jewish Museum
in New York in 1970; and Information, held at
the Museum of Modern Art (MoMA) in 1970.
The curator of the Software exhibit, Jack
Burnham, described the works on view as
“art that is transactional in that they deal with

underlying structures of communication
and energy exchange.”8 Among the works
on view, Hans Haacke’s ambitious Visitor’s
Profile sought to reveal the elite social
status of the museum’s patrons as a form of
critique of the art world. Using a computer
interface, it tabulated personal information
solicited from visitors. Les Levine exhibited
Systems Burn-off X Residual Software, a
collection of photographs discussed within
the context of software. Levine claimed that
images are hardware, and that information
about the images is software. He wrote the
provocative statement, “All activities which
have no connection with object or material
mass are the result of software.”9 Similar to
Levine’s piece, many of the works featured
in the Information exhibition at MoMA were
characterized as “conceptual art.”

At the same time, artists and musi-
cians—including Mel Bochner, John Cage,
Allan Kaprow, Sol LeWitt, Yoko Ono, and
La Monte Young—created a different type
of conceptual and process-based art by
writing instructions and creating diagrams
as a form of art. For example, instead of
physically making the drawings, LeWitt
encoded his ideas as instructions that
were used to produce drawings. He wrote
a series of rules to define the task of a
draftsperson, but the rules are open for
interpretation; therefore many different
results are possible. Ono’s artworks, such
as Cloud Piece, are instructions for life;
each short text asks the reader to perform
actions like laughing, drawing, sitting, or
flying. Like programmers, these creators all
wrote instructions for actions. Through
their use of English as the programming
language, they introduced ambiguity,
interpretation, and even contradiction.

Simultaneous with these conceptually
focused explorations, engineers were
creating programming systems for the
creation of visual images. In 1963 at Bell
Laboratories, Kenneth C. Knowlton wrote
BEFLIX, a specialized program for con-
structing animation, which he used

Code and the arts

 7 Seymour Papert, The
Children’s Machine: Rethinking
School in the Age of the
Computer (New York: Basic
Books, 1994), 157.

 8 Jack Burnham, Software—
Information Technology: Its
New Meaning for Art (New York:
The Jewish Museum, 1970), 10.

 9 The New Media Reader
(Cambridge, MA: MIT Press,
2003), 255.

CLOUD PIECE
Imagine the
clouds dripping.
Dig a hole in
your garden to
put them in.

1963 Spring

Proposal for a Wall
Drawing, Information
Show,
by Sol LeWitt, 1970
The instructions for
LeWitt’s drawings are

executed by a skilled
draftsperson who inter-
prets the instructions
during the drawing
process.

Electronic Numerical
Integrator And Computer
(ENIAC), 1943–46
The first digital
computers were very
different from modern

computers. ENIAC cost
almost $500,000 and
weighed over thirty
tons. This U. S. Army
photo shows two of the
computer’s programmers.

Cloud Piece,
by Yoko Ono, 1963
Ono’s artwork is the
instructions. The
reader imagines or
performs the actions.

20What is Code? What is Code? 21

W
h
a
t

i
s

c
o
d
e
?

The influence of code is not limited to the
screen and projected image. It is also felt
in physical space. Code is used to control
elements of products, architecture, and
installations. It is used to create files that
are output as prints and made physical
through computer-controlled machines
that cut and assemble materials, includ-
ing wood, metal, and plastic. Code is
rapidly moving outside the boundaries of
the screen and is starting to control more
aspects of the physical world. There are
examples of this in the Producing Form
section of “Form and Computers” (p. 37),
as well as throughout this book.

to create early computer films in collabora-
tion with artists Stan VanDerBeek and Lillian
F. Schwartz. The computer-generated film,
Permutations, was created in 1966 by John
Whitney Sr. using GRAF, a programming
library developed by Dr. Jack Citron of IBM.
Both BEFLIX and GRAF were built on top of
the language Fortran. From these and other
early explorations, the development of pro-
gramming languages written expressly for
the arts has continued to gain momentum,
building toward the current frenzy of activity.

In the 1980s, the proliferation of the per-
sonal computer allowed programming to
reach a wider audience, which in turn led to
the development of HyperTalk, a program-
ming language for Apple’s unique HyperCard
application (an early hypermedia system).
The related Lingo language was developed
for the first release of Adobe Director in 1988
(formerly Macromedia Director, and before
that MacroMind Director). Lingo was the
first programming language used by many
designers and artists in the era leading up
to the development of the World Wide Web
in the early 1990s. The early days of the
web fostered intense graphic programming
exploration, primarily channeled through the
ActionScript language. The rise of program-
ming literacy within the arts and architecture
communities has led to the current prolif-
eration of programming options; many are
featured within this book.

BASIC, 1964
This program draws a
grid of 100 squares.
It demonstrates how
the BASIC language can
be used to control a

mechanical drawing arm
known as a plotter.

HyperTalk, 1987
The HyperTalk language
was written to be easy
for beginners. It is
more similar to English
than most other pro-
gramming languages.

10 DEFINT A-Z’ DRAW100SQ
20 CLS
30 MOVE$="!AX"
40 DRW$="!AY"
50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1, "!AE";
70 FOR ROW=0 TO 90 STEP 10
80 	FOR CLM=0 TO 90 STEP 10
90 		 GOSUB 310
100 		 PRINT #1, MOVE$+STR$(ROW)+STR$(CLM)
110 		 GOSUB 310
120 		 PRINT #1, DRW$+STR$(ROW+10)+STR$(CLM)
130 		 GOSUB 310
140 		 PRINT #1, DRW$+STR$(ROW+10)+STR$(CLM+10)
150 		 GOSUB 310
160 		 PRINT #1, DRW$+STR$(ROW)+STR$(CLM+10)
170 		 GOSUB 310
180 		 PRINT #1, DRW$+STR$(ROW)+STR$(CLM)+";"
190 	NEXT CLM
200 NEXT ROW
210 PRINT
220 GOTO 70
230 '
240 '
250 '
260 '
270 'XON/XOFF subroutine

What is Code?

Hypertalk

BASIC
22What is Code? What is Code? 23

W
h
a
t

i
s

c
o
d
e
?

Each existing form of media—whether
drawing, printing, or television—is capable
of assuming new qualities of expression.
For example, video games demonstrate
many of the distinct characteristics of
software. If you’ve ever succumbed to the
pleasures of a great game (we know some
of you have; if you haven’t, then what are
you waiting for?), you already know that
the emotions experienced while playing
are different than those felt while watching
a film or looking at a drawing. Games can
be physically engrossing and socially
engaging, and they can sustain intense
fascination over a period of months.

In reference to the emerging media
of his time, theorist Marshall McLuhan
wrote, “Today we’re beginning to realize
that the new media aren’t just mechanical
gimmicks for creating worlds of illusion,
but new languages with new and unique
powers of expression.”11 Writing code is
one gateway for realizing these new forms.
Learning to program and to engage the
computer more directly with code opens
the possibility of not only creating tools,
but also systems, environments, and
entirely new modes of expression. It is here
that the computer ceases to be a tool and
instead becomes a medium. We hope the
following chapters will provide evidence
for you to draw your own conclusions
about the potential of software in the
visual arts.

The use of software in the arts can be sepa-
rated into two categories: production and
conception. In the first category, the com-
puter is used to produce a preconceived
form; in the second, the computer partici-
pates in the development of the form. Within
the context of this book, we’re primarily
interested in the latter. (It is important to note
that this distinction does not imply a value
judgment but does impact the types of forms
that are created.)

Using the computer to reduce the amount
of time needed to create a complex, repeti-
tive composition was often the motivation
for the early adoption of software and its
integration into the creative process. This was
especially important in the field of animation,
where subtle changes had to be repeated
thousands of times to create the illusion
of motion; however, this alluring technical
benefit has had a profound effect. If initial
production takes one-tenth the time that it
would take to execute the work by hand, then
the artist can create ten versions in the same
amount of time. This way, many versions can
be created and the best chosen. Efficiency
facilitates the creative process by enabling
more time for exploration as less time is
needed for the final production. Eventually
the computer came to be understood as
more than just a production tool. People
started to see it as, in the words of computer
graphics pioneer A. Michael Noll, “an intel-
lectual and active creative partner that, when
fully exploited, could be used to produce
wholly new art forms and possibly new aes-
thetic experiences.”10

Often, to realize a new or unique vision
requires that artists and designers exceed the
limitations of existing tools. Proprietary soft-
ware products are general tools designed for
the production of specific types of forms.
If you are already using software for your work,
why constrain yourself to the expectations of
a software company or another programmer?
To go beyond these limitations, it is necessary
to customize existing applications through
programming or to write your own software.

10 Jasia Reichardt, Cybernetics,
Art, and Ideas (New York: New
York Graphic Society, 1971), 143.

11 Edmund Snow Carpenter
and Marshall McLuhan,
Explorations in Communication:
An Anthology (Boston, MA:
Beacon Press, 1960), 2.

Why Code?

Strand Tower,
by Testa & Weiser,
Architects, 2006
Strand Tower precursors
were generated using a
purpose-built software

(Weaver) and coded
through an iterative
templating process.
Specific fiber behav-
iors or traits such
as fraying, bundling,

knitting, and bias
patterning are coded
into the design. Fiber
agency and affiliation
is more informal and
multidimensional than

conventional woven
patterns.

24 What is Code? 25

W
h
a
t

i
s

c
o
d
e
?

What is Code?

Even before the advent of the mod-
ern personal computer in the late
1970s, “computing machines” were
used by designers in the aerospace
and automotive industries to
perform complex calculations, and
by scientists to develop intricate
simulations of the physical world.
The advantages initially offered
by computers came in the form of
efficiency and precision. Exploring
new possibilities was not a priority;
more importantly, they were used
to perform calculations in a fraction
of the time. The efficiency offered
by the computer extended to the
production of technical blueprints
and allowed complex geometric
drawings to be created far more
quickly than with conventional
techniques. Today, computers
are still used as accurate drafting
machines, but new ways of using
them have opened new territories.

These letters convey the way computers interpret and display
typography as a series of points, lines, and curves. For example,
Adobe’s PostScript language renders typography with three
commands: moveTo, lineTo, and curveTo. To create this typeface,
the moveTo command was removed, rendering the letters as a
continuous line.

26 27

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

In 1963, Ivan Sutherland pioneered the
graphical user interface (GUI) with his
Sketchpad; this initiated a paradigm shift
in how people interacted with computers.
Sketchpad’s interface consisted of a set of
switches and dials, a display, and a light
pen—a device used to draw directly on the
screen. By pressing switches on a control
panel while drawing, the user was able
to instruct the computer to interpret the
movement of the pen in different ways. Each
time the pen touched the screen, a new line
was added between the last point and the
new one. In this way, the user could draw
simple polygons. Another switch was for
drawing circles, and another for arcs, etc.;
this allowed for fairly sophisticated drawing.
Sketchpad gave designers a way to directly
manipulate objects on screen without having
to first write a numerical, code-based repre-
sentation of those objects. After the objects
were made, they could be duplicated,
moved, scaled, and rotated to create new
compositions.

Sketchpad was much more than a crude
analog of paper and pen; it was a funda-
mentally new way to design. When drawing
in Sketchpad, the designer could make use
of constraints in order to form new relation-
ships between elements and to force them
to behave in specific ways, for example:
snapping the end points of line segments
to other end points or lines, keeping lines
parallel, or forcing them to have the same
length. The user could also create more
sophisticated constraints, for example:
a constraint could be designed to simulate
the load-bearing properties of a bridge.

With the first computer-aided design
(CAD) systems, Sutherland’s innovations left
the lab and entered industry. The software
used within the fields of engineering and
architecture lacked many of his innovations
and served as little more than an analog for
pen and paper. They allowed designers to
draw using mathematical lines and curves
rather than T-squares, drawing boards,
and pencils. These “high-powered drafting

machines” were hailed for their efficiency,
speed, and productivity.1 Drawings that
would have taken days could now be done
in hours.

Even in this capacity, drawings made
on the computer were considered a poor
substitute for hand-drawn sketches and
diagrams. Some people felt that the draw-
ings produced by CAD machines were
cold and overly technical, preferring the
“slightly wobbly line work and imprecise
endings of hand-drawn lines.”2 There were
other obstacles to integrating CAD systems
into industry. Some felt that they presented
a new temptation—to never stop editing
a drawing or set of plans; others believed
that there were too many assumptions
in the software that restricted the design
possibilities.3 As a result of these and other
problems, computers were considered
insufficient for the conceptual stage of
design and were often used only at the end
of the creative process. The advantages
focused primarily on saving the designer’s
time and increasing productivity.

Within the design industry, however,
the field that has been most profoundly
transformed by the use of computers is
graphic design. The proliferation of the
personal computer—and, later on, the
laser printer—laid the foundation for
desktop publishing. Apple’s LaserWriter
could reproduce typography and images
at much higher resolutions than previ-
ous home and small-business printing
technologies. Perhaps more importantly,
the LaserWriter included PostScript, which
made it possible to use a wide array of
fonts in the design, because they were
now treated as software as opposed to
physical metal type or transferrable letter-
ing. This opened the door for designers to
create and distribute their own typefaces
and to have more control over the final
typesetting. These technologies enabled
vibrant activity and widespread innovation
within the field of visual design in the
1980s and 1990s, ranging from the fonts of

Sketchpad,
Ivan Sutherland, 1963
With Sketchpad, users
drew directly on the
screen using a light
pen. The behavior of

the pen was controlled
by a group of switches,
buttons, and knobs. This
image shows Sutherland
using his software on a
TX-2 computer.

Drawing with Computers

1 Jasia Reichardt, Cybernetic
Serendipity: The Computer and
the Arts (New York: Praeger,
1969), 67.

 2 William John Mitchell and
Malcolm McCullough, Digital
Design Media: A Handbook
for Architects and Design
Professionals (New York: John
Wiley & Sons Inc., 1991), 129.

 3 Christopher Woodward and
Jaki Howes, Computing in
Architectural Practice (London:
Spon Press, 1998), 92.

28 Form and Computers 29

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

Form and Computers

Emigre and FUSE, to the radical work of April
Greiman, David Carson, and many others.

With PostScript solidifying its place as
the de facto standard, Adobe introduced
Illustrator as its new visual development
tool. With Illustrator, anyone could draw and
lay out text and graphics without having
to know the intricacies of the PostScript
language. Eventually Illustrator, along with
Adobe’s Photoshop and InDesign applica-
tions, became nearly ubiquitous among
graphic designers. Interestingly, all three of
these applications have introduced scripting
languages in recent years that allow users to
extend the tools by writing code.

Following the birth of the Internet and
other networking technologies, the computer
increasingly became a tool for collaboration.
Global computer networks called into ques-
tion the need for centralized offices, in favor
of an organization consisting of individuals
spread around the globe. This has had a
massive impact on the open-source software
movement, where large and sophisticated
applications are often built by a loose collec-
tion of individuals united by a shared interest.
These new ways of working also had an
impact on the way forms were created. In a
distributed environment, different individuals
work simultaneously on different parts of the
same piece, seeing the whole only after the
parts are stitched back together.

Having begun to represent objects and,
with the aid of Sketchpad, relationships and
behaviors, the real potential for the role of
computers in design started to assert itself.
If computers could be used to model what
we know, then perhaps we could also use
them to simulate what we don’t know. French
architect and philosopher Bernard Cache
summed up the history of CAD systems by
saying they “have certainly increased the
productivity of the idea, but fundamentally
they offer no advances over the work done
by hand. Now, we can envisage second-
generation systems in which objects are no
longer designed but calculated.”4

Morisawa Posters,
by John Maeda, 1996
Rather than rely on
existing software
tools, Maeda wrote his
own code to manipulate
typographic form. This

allowed him to explore a
unique graphic language
for the ten posters he
created for Morisawa.
Each poster performs an
algorithm to transform
the logo of the company.

 4 Bernard Cache, Earth
Moves: The Furnishing of
Territories (Writing Architecture)
(Cambridge, MA: MIT Press,
1995), 88.

Sine Curve Man,
by Charles A. Csuri,
1967
The geometry for this
plotter drawing was
created by distorting
an image of a face

using the values of a
sine wave. Like much of
Csuri’s work, code was
manipulated to create
an abstraction of the
human form.

Chicago,
by Skidmore, Owings &
Merrill (SOM), 1980
With the rise in com-
puting power and the
increasing sophistica-

tion of CAD software,
it became possible to
model entire cities.
SOM created a wireframe
model of downtown
Chicago to give viewers

a feel for the city’s
form and massing of
buildings.

30Form and Computers Form and Computers 31

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

Understanding the ways that code is used in
the production and creation of form requires
a general knowledge of how form is manipu-
lated by the computer. Outside the computer,
form itself is physical and intuitive—it is the
curve of a line on a page, the texture of paint,
or the slope of a hillside. To manipulate form
in the world, we don’t need to understand
the mathematics behind how things are put
together, and we can specify where things
are in relative terms, like “over there” or “next
to me.” If a piece of clay is close enough to
touch, then it can be directly molded and
shaped. In contrast, computers rely on the
ability to specify everything in numerical
terms.

Coordinates
The computer needs to know the position
of every mark it draws, either on the screen
or with a printer. To do this, we typically use
Cartesian coordinates. If you imagine laying
a large piece of graph paper over the screen,
an x-axis runs from left to right, and a y-axis
goes from top to bottom. These axes allow
us to specify a precise position on the grid
using a pair of numbers, normally the x-value
followed by the y-value. For example, a point
at (5, 10) is 5 lines from the left edge of the
screen, and 10 lines down from the top.

Shape
Placing a piece of graph paper on the screen
is more than just a metaphor. The screen is,
in fact, composed of a grid of points called
pixels. One way to draw a form on-screen is
to lay the grid of pixels over an image of the
form and measure the color value at each
pixel in the grid. This method of represent-
ing an image makes what is called a raster
image.

A raster image, which is sometimes
referred to as a bitmap, is a complete
description of what is shown on-screen at
a given resolution. Resolution refers to how
many points make up an image for a given
physical size. If an image has a resolution of
800 × 600 pixels, there is a total of 480,000

pixels in the image, therefore requiring
480,000 numbers, with each one represent-
ing the color of one pixel. Resolution can
be thought of as an image composed of
tiles. There are two ways to make a tiled
image look better: make the tiles smaller
or move farther away from the image.
On a computer, the two are related. Since
the screen has a set size, lowering the
resolution is like increasing the size of the
tiles; alternately, you can keep the screen
resolution constant and make the image
smaller on-screen.

As explained earlier, an image’s form,
color, and shape must be converted to
numbers in order for it to be useable on a
computer. As a result, these qualities often
lose the continuity that we have become
accustomed to in the world. Every image
on the computer has a resolution, or a
width-by-height measurement, in pixels,
but how many pixels are enough? The ever-
increasing number of megapixels available
in digital cameras and the popularity of
high-definition television (HDTV) suggest
that there are never enough.

A megapixel is one million pixels. It
refers to the total number of pixels in an
image. In other words, the width of the
image in pixels is multiplied by the height
of the image in pixels so that an image
measuring 2,048 by 1,536 is said to have
3.1 megapixels (2,048 × 1,536 = 3,145,728).
Our eyes see a continuous analog stream
of colors. The best we can do to represent
that digitally is to increase the resolution to
fool the eye into thinking that the image is
continuous. But the fact remains that this
is just a simulation, and it requires a lot of
processing and memory to store enough
information for the illusion to hold.

Raster graphics are an ideal way to store
and manipulate photographic imagery, but
they suffer from the confines of the resolu-
tion at which they are created. If we scale
a bitmap image up to make it larger, the
blocks of color must also be enlarged. This
makes raster graphics a less than ideal way

5 1 2 2 2 2 2 2 2 5 3 3 2 2 1 1

2 1 1 1 2 2 2 1 2 2 5 3 3 2 2 2

1 1 1 1 2 3 2 2 1 2 2 5 5 3 3 3

1 2 1 2 5 5 3 2 2 2 3 5 8 5 3 3

1 2 2 3 8 8 5 3 3 5 5 8 8 8 5 3

1 2 2 3 5 5 5 2 3 5 8 8 8 8 5 5

0 2 2 2 3 3 3 2 3 5 8 8 8 8 5 5

1 1 1 1 1 2 2 2 2 5 5 8 8 5 5 5

0 1 0 0 1 2 2 2 3 5 5 5 5 5 5 5

0 0 1 1 1 2 2 2 3 5 5 5 5 5 5 5

1 1 1 1 2 2 3 2 2 5 3 3 3 5 5 5

2 2 1 1 1 2 2 2 2 3 3 2 3 3 5 8

2 3 0 1 2 2 2 2 2 2 2 1 2 2 5 8

2 3 1 0 0 1 1 1 1 1 1 0 1 3 8 8

1 3 2 0 0 0 0 1 1 0 0 0 2 3 5 8

1 2 3 3 2 1 0 0 0 0 0 1 2 3 5 5

Coordinates
Most computer graphics
use a square grid with
a horizontal x-axis and
a vertical y-axis. An
additional x-axis is
used to draw 3-D forms.

Raster
A raster is a grid of
pixels. The color of
each pixel is con-
trolled to create an
image.

Electronic Abstraction 6,
by Ben F. Laposky, 1952
Laposky used an oscillo-
scope—a technical device
for viewing changes in
voltage—to produce his
abstract images.

Starting in the early
1950s, he refined a
process of modulating
electronic waveforms
to produce stunning and
diverse images.

Controlling Form

10

10

20

20

30

30

+Y

+X

-Z

Form and Computers 33

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

Form and Computers 32

BattleZone,
Atari, 1980 and 1983
The graphics in
the arcade version
of BattleZone were
drawn with vector

lines on an oscil-
loscope. The Atari
2600 home version of
BattleZone used raster
graphics, because it
was displayed on a

television set. It was
more colorful, but the
graphics were lower in
resolution.

to store drafting or drawing information that
often needs to be moved, scale, rotated, and
reworked. For this, there are vector graphics.

Vectors graphics use the same Cartesian
grid as bitmaps, but instead of storing the
value for every pixel in the image, they
store a list of equations that define the
image. This is ideal for drafting and preci-
sion drawing, where any shape available
to geometry—lines, circles, rectangles, and
curves—can be combined to create a com-
position. Because the forms are described
using geometric equations, they can be
scaled and transformed easily and without
losing detail. The scalable nature of vector
graphics makes them an essential element
in the production of printed matter. A printer
may have a resolution many times greater
than that of a monitor, and without vector
graphics it would be very difficult to create
smooth lines and crisp type. Furthermore,
fabrication technologies, such as laser
cutting and computer numerical controlled
(CNC) milling rely on the detail and precision
offered by vectors.

Objects in three-dimensional modeling
software, such as Rhinoceros and Autodesk
Maya, are commonly represented using
vectors. In addition to the two-dimensional
curves, points, and lines we are familiar
with, these applications allow designers to
create a number of different objects, such
as meshes, NURBS (Non-Uniform Rational
B-Splines), and subdivision surfaces.

Color
Unlike paint, color on-screen is additive,
meaning that the more colors you add
together, the closer you get to white.
Additive color systems use the primary colors
red, green, and blue to create the colors we
see on-screen. The common 24-bit color
depth allows each base color to be assigned
a value from 0 to 255, giving a total of
16,777,216 possible colors—that’s more than
can be distinguished by the naked eye. For
example, pure yellow has a red value of 255,
a green value of 255, and a blue value of 0.

Light brown has a red value of 140, a green
value of 98, and a blue value of 0. Changing
this blue value to 255 produces an electric
purple.

Realism
Like the history of European painting until
the end of the nineteenth century, the his-
tory of computer graphics has prioritized a
realistic depiction of the natural world. The
bridge between the crude wireframe engi-
neering models produced in the 1960s and
the naturalistic form, lighting, and textures
of today's rendering tools has spanned over
thirty years of focused research. (This tran-
sition can be traced, in part, using the dates
of the work included in this book.) One of
the first effects mastered was the illusion
of a third dimension rendered on a flat
screen. After that came the hidden-surface
algorithm for hiding the lines at the back of
a model and making it appear solid rather
than composed of wire. Similar to how
shading in a pencil drawing helps produce
depth and continuity, shading algorithms
were developed to create the appearance of
smooth surfaces from the hard edges of flat
polygon models. Over time, new and better
techniques were developed to accurately
depict textures and, more importantly, light
reflecting off surfaces. Beyond these algo-
rithms, a mathematical model of a camera
is at the core of most rendered software
images. The parameters of these models
imitate those of real lenses, such as focal
length, field of view, and aperture. When
the image is rendered, the calculated lens
optics determines how near or distant the
objects appear and distorts the geometry
to create perspective. The development of
ever-more-realistic rendering techniques
continues, but in recent years there’s been
a renewed interest in non-photorealistic
rendering. These techniques make geomet-
ric models look as if they were painted or
built from clay.

Splines
A spline is a type of
curve, with a shape
defined by the position
of control vertices.
Splines have a dimen-
sionality that affects

how close the curve
fits to each vertex.

Advanced Geometry
Surfaces can be math-
ematically defined in
a number of different
ways. A triangle mesh
is a set of connected
triangles; NURBS are

smooth surfaces cre-
ated with splines; and
subdivision surfaces
use recursion to make a
fine mesh to represent
curvature.

Toward realism
The history of algo-
rithms in computer
graphics follows a
path toward realism,
from coarse outlines to
smooth, solid surfaces.

Form and Computers 35

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

34Form and Computers

An important aspect of the relationship
between form and code is how the abstract,
immaterial, and imperceptible world of
code comes into contact with our senses.
Understanding how color is represented is
a part of this relationship, but there are
other processes by which the numerical
representation of form can be transformed
into something that we can perceive, such
as light, pigment, or material structure.

Light
Long before the ubiquity of full-color
displays, the oscilloscope served as the
primary device for real-time visual output
from the computer. Despite its low-quality
monochrome image, systems like Sketchpad
and early video games made excellent use of
this device.

The full-color cathode ray tube (CRT) in
the form of the television was targeted as the
primary display device for early home video
game systems, such as ColecoVision and the
Atari 2600. The CRT consists of an electron
gun and fluorescent screen enclosed in a
vacuum tube. The gun fires electrons at
the screen in a left-to-right, top-to-bottom
pattern. When the electrons strike the screen,
the fluorescent material glows. As a result
of this process, the images on CRT screens
have a very distinctive appearance.

The invention of the framebuffer was
crucial to the widespread use of the full-
color CRT, and to computer graphics as a
whole, opening the door for digital painting
programs, photo manipulation, and texturing.
First developed at Xerox Palo Alto Research
Center (now called PARC Inc.) in 1972, the
framebuffer stored the entire contents of the
screen in memory. Prior to this, only vector
graphics could be drawn on-screen, because
it was impossible to manage the amount of
memory necessary to work with rasterized
images.

Increasingly, the most common computer
displays in use today are liquid crystal dis-
plays (LCD). LCDs have numerous advantages
over the CRT. They use less power and

are smaller, which makes them ideal for
mobile computing. They can also update
their image faster to provide a more vivid
experience. Because LCDs can be made
in a range of sizes, from the handheld to a
large television, they can be used to create
both intimate and public experiences. In
addition, they can be modified to make
touch screens and to provide physical
feedback.

Modern digital projectors allow content
to be seen by a large group of people at
once. Beyond this basic use, projectors
offer a way to immerse the viewer in
imagery, augment a physical space, or
create nonstandard display shapes such as
circles. The front-projection setup, where
the image is projected onto the front side
of a screen, is the most common. A rear-
projection setup, with the image projected
onto the back of a semitransparent screen,
is a good way to allow viewers to approach
the image without worrying about casting
shadows or otherwise interfering with the
image.

Appearing in everything from key chains
to coffee makers to animated billboards;
light-emitting diodes (LEDs) are a staple
of contemporary everyday life. An LED is
an electronic component that creates light
when a current is applied to it. Compared
to traditional means of generating light,
LEDs are far more energy efficient and
last longer. In the context of form making,
they are interesting for their highly variable
appearance and small size. It is possible
to create displays of nearly any size or
shape by piecing a large number of LEDs
together. In this way, each LED can act as
a pixel in a raster display. These custom
displays are then controlled using hard-
ware and software that make them behave
like traditional screens.

Entramado,
by Pablo Valbuena, 2008
Valbuena combines
virtual 3-D models
with precisely placed
projectors to augment
physical space with

a closely choreographed
sequence of light,
which appears to follow
and modify the space
itself.

Pixillation,
by Lillian Schwartz,
1970
Schwartz worked with
Ken Knowlton at Bell
Labs to produce the
computer-generated

sequences of this
abstract film.

Oscilloscope
Oscilloscopes use
voltages to control the
movement of an electron
beam. The movement from
left to right is some-
times fixed to a clock,

while the movement up
and down is controlled
by an electrical sig-
nal. This setup makes
it easy to visualize
regular signals like
sine waves.

Cathode ray tube (CRT)
Electrons are fired
through a vacuum tube
at a phosphorescent
screen, causing it
to glow on impact. In
raster displays, the

beam moves from left to
right, top to bottom.

Producing Form36Form and Computers Form and Computers 37

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

Printing
In the early days of computer graphics,
images were printed on paper using a plotter
in order to make the details, which appeared
vague on the extremely limited displays,
appear clear. A plotter is a machine that
moves a pen over a drawing surface. The pen
is given commands to control the direction
and speed of movement, making it possible
to vary the quality of the lines. By changing
the material of the drawing surface or swap-
ping the pen for a pencil, brush, or other
drawing instrument, many interesting results
have been created.

In the mid-1980s, the first laser printers
designed for home use began to appear.
Laser printers use a combination of electric
charge and focused light to fuse toner to
paper. This technique allows them to print
300 dots per inch (dpi), which is considerably
higher than the 72 dpi available with the
common dot matrix printer.

Though laser printers excel at printing
on paper, the invention of the inkjet printer
expanded the range of possible mediums
and inks available. The basic spray-nozzle
design of the inkjet is so flexible that it is now
possible to print on diverse types of paper,
plastic, and fabric. Even entire circuit boards
can be “printed” using conductive ink.

Fabrication
Fabrication is a catchall term used to
describe a host of new technologies that are
capable of producing physical objects out of
digital representations. In a far more drastic
way than printers and screens, various fabri-
cation techniques are used for vastly different
purposes and require new ways of thinking
about code, space, and structure. The most
common and straightforward fabrication
tool is the laser cutter, which is mechanically
similar to a plotter, except that a laser, rather
than a pen, is positioned on an arm that
can move in two dimensions. The computer
moves the laser along the x- and y-axis of the
bed to cut the material. Often, laser cutters
have restrictions on the size, thickness, and

type of material that can be cut. In addition
to movement in two directions, the power
of the laser cutter can be adjusted to etch
metal and create intricate burn patterns on
wood. Though laser cutters are limited to
working in two dimensions, many archi-
tects, designers, and sculptors have found
inventive ways to cut sections (similar to
topographic maps) that are then reas-
sembled to create intricate 3-D objects.

CNC milling, Selective Laser Sintering
(SLS), stereolithography, and 3-D printing
are just a few of the ways to create fully
three-dimensional objects; that is, objects
whose representations on the computer
screen include information for x, y, and z
axes, which are used to control the output
device. A CNC-milling machine is similar
to a plotter or laser cutter, but with the
added flexibility of a continuous up-and-
down motion. For example, a router bit is
moved over a block of material, and as
the bit moves, it cuts away a small amount
of material, leaving behind a sculpted
surface. In a three-axis machine, the router
bit can only move directly up-and-down,
making it difficult to sculpt objects from
all sides. Some machines mount the block
of material on a lathe, which rotates the
surface facing the bit in order to provide
additional flexibility.

CNC milling is a subtractive process;
that is, material is cut away from a larger
block in order to create the object. In con-
trast, SLS, 3-D printing, and stereolithog-
raphy are additive processes that build up
the final object by adding or fusing mate-
rial together. Additive techniques have the
distinct advantage of being able to create
hollow spaces, undercuts, and overhangs,
which are difficult to do using a three-axis
CNC machine.

In a 3-D printer, a model is created
by layering and fusing successive cross
sections of material. Layers of powdered
material, such as plaster, resin, or even
cornstarch or sugars, are deposited
and then selectively fused together by

Volume,
by United Visual
Artists, 2006
This light and sound
sculpture is composed
of a series of custom-

designed LED columns
that respond to the
motion of viewers.

Hylozoic Grove,
by Philip Beesley, 2008
Beesley used a laser
cutter to create two
different types of form
for this sculpture.

The structure and
mechanisms were cut
from rigid plastics;
while light, flexible
plastics were used to

create the delicate
featherlike elements.

Plotter
Plotters work by moving
a drawing implement,
typically a pen or
brush, over a surface to
control its horizontal

and vertical
positions with two
motors. A similar mecha-
nism is used in laser
cutters and CNC-milling
machines.

Cirrus 2008,
by Zaha Hadid
Architects, 2008
This sculptural seat,
built by Associated
Fabrication, is made

of milled sheets of
Formica and medium
density fiberboard.

38Form and Computers Form and Computers 39

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

“printing” an adhesive from an ink-jet-like
printer head. After the model is complete,
it is excavated from the excess powder,
which is then recycled for the next model.
Stereolithography and SLS both employ
variations of this additive technique. In
stereolithography, thin layers of a photopo-
lymer resin are deposited and then cured
with an ultraviolet laser to harden the areas
where it is focused. Once all of the layers are
complete, the remaining liquid is drained
and the model undergoes additional curing
in ultraviolet light. SLS combines ideas from
both 3-D printing and stereolithography.
Thin layers of powder are deposited and
then fused together using a laser to build the
model layer by layer. A distinct advantage of
SLS is the wide variety of materials that can
be used, including nylon, ceramics, plastic,
and metals, making it possible to quickly
create prototypes of working machine parts.

Ecorché structurel,
by R&Sie(n)+D, 2008
R&Sie(n)+D imagine pos-
sible future worlds and
ways of living. This SLS
3-D–printed model

is described by its cre-
ators as, “The cells were
no longer enclosures to
protect from the out-
side...[but]‘habitable
networks, woven space,’

an exfoliation of con-
stantly reconfigured
habitable organisms.”

40Form and Computers Form and Computers 41

F
o
r
m

a
n
d

c
o
M
p
u
t
e
r
s

