
// BASIC STRUCTURE

void setup(){

	 // any instructions here are processed just once during initial 'setup'

}

void draw(){

	 // any instructions here are looped at roughly 60fps

}

// COMMENTS + DEBUG

/*

this is a multiline comment.
nothing between here will be run or executed
*/

// this is a single line comment
println(foo); // writes the value of 'foo' to the console, use to learn value of variable!

// BASIC STYLE ATTRIBUTES

background(0); //sets background black (test having and not having in draw function)

size(640, 480); //sets canvas size to 640px * 480px

size(screen.width, screen.height); //full screen canvas

frameRate(15); //default frameRate is 30, only change when necessary

noFill(); // turns off the fill of any object following this code

fill(255); // turns fill on and sets color to white (note, one value for grayscale)

fill(255, 145, 90, 150); // same but with color (r, g, b) + alpha as 4th digit

noStroke(); // turns off stroke

stroke(0); // turns stroke back on and is black (use color as listed above)

strokeWeight(5); // sets thickness of stroke (any value goes here)

smooth(); // turns on anti-aliasing for smoothening vectors

rectMode(CENTER); // sets x and y of rect to center of rect (alt: ellipseMode, imageMode)

noLoop(); // stops draw{} function from default 30fps looping

loop(); // resumes looping

// BASIC FORMS

point(x, y); // places single point on canvas based on x and y values

line(x1, y1, x2, y2); // draws line from starting x2, y2 - to ending x2, y2

rect(x, y, width, height); // draws rectangle at given postition and size

ellipse(x, y, w, h); // draws ellipse at given postition and size

quad(x1, y1, x2, y2, x3, y3, x4, y4); // draws quad

triangle(x1, y1, x2, y2, x3, y3); // draws triangle

// VARIABLE TYPES

int foo = 1; // integer or whole number (1, 2, 3, 4, ...)

float foo = 3.14; // float is decimal number (3.14159265)

String foo = "blah"; // will be a "string which is written in quotes"

boolean foo = false; // true or false

// INTERACTION

mouseX // grabs the X mouse coordinates, int variable

mouseY // grabs the Y mouse coordinates, int variable

if(mousePressed){ } // used in the draw{ } function to know if mouse was pressed

if(keyPressed){ } // used in the draw{ } function to know if any key was pressed

if (key == 'a'){ } // is true if the letter a is pressed

if (keyCode == 32){ } // alternative for key, in this case is SP

println(keyCode); // use this to learn the keyCode for any key on the keyboard

// INTERACTION FUNCTIONS

void mousePressed(){ } // will only trigger once when mouse is pressed

void mouseReleased(){ } // will only trigger once when mouse is released

void keyPressed(){ } // will only trigger once when key is pressed

void keyReleased(){ } // will only trigger once when key is released

// USEFUL PROPERTIES

width // refers to canvas width, int variable, 'width/2' for horizontal center

height // refers to canvas height, int variable, 'height/2' for vertical center

frameCount // returns current frame number, int variable

// MATH

+ - * / // add, subtract, multiply, divide = basic math operations

foo += 5; // value = it's current value + 5, used for constant motion in draw loop (+, -, *, /)

foo = foo + 5; // same as above, but requires more code

foo ++; //similar to above, however only adds 1 each time (also works with --)

abs(); // absolute value, useful when comparing two numbers with subtraction

floor(); // convert a float into an int

if(foo %2==0){ }; // checks if number is even (2 « or multiple of any other value)

// RANDOM CHAOS!

random(100); // generates a random float number from 0 » 99

random(75, 100); // generates a random float number from 75 » 99

noise(foo); // more organic than random = less jumpy, google 'perlin noise'

// CONDITIONALS

a == b // a is EQUAL to b (note the use of two == signs)

a != b // a is NOT EQUAL to b

a > b // a is GREATER than b

a < b // a is SMALLER than b

a >= b // a is GREATER or EQUAL to b

a <= b // a is SMALLER or EQUAL to b

// CONDITIONAL STATEMENT

// if / or	

if(a == b){

	 // if ‘a’ IS EQUAL to ‘b’ all code in between these { } will be executed

}else{

	 // if NOT this code will be executed (note: an else{} is not always needed)

}

// if / ifelse / or

if(a == 1){

	 // if ‘a’ is equal to 1, this code is executed

}else if(a == 2){

	 // or if this is true, this code is executed

}else if(a == 3){

	 // or if this is true, this code is executed

}else{

	 //otherwise this will be executed

}

// LOGICAL OPERATOR

if(a>0 && a<10){ } // BOTH statements must be true = AND

if(a<10 || a>100){ } // EITHER statement must be true = OR

// FOR LOOP // your BEST friend for repetition... your BEST friend for repetition

for (int i = 0; i < 100; i++){

	 // looping events go here!

	 point(i*5, 10); // i produces a unique number on every loop, use it!	

}	 // int i starts at 0; as long as i is less than 100, the following loops; add 1 to i on each loop

// MISC

foo = "pic_" + num + ".png"; // connect variable + "string" with plus signs

saveFrame("output-####.png"); // save a PNG bitmap image

/* */PROCESSING.ORG
EVERYTHING CHEATSHEET I

Of course not everything is here... but it would be of little help if it were. This is merely
a reference guide for basic shapes, functions, math, etc... For a thorough explaination
of most concepts on this page, be sure to visit: www. processing.org/reference/
where you'll find this + much much more! cc teddavis.org 2011 – fhnw hgk ivk

http://www. processing.org/reference/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.teddavis.org
http://www.thebaselschoolofdesign.ch

